Residuated lattices do **not** have the amalgamation property

Peter Jipsen and Simon Santschi

Chapman University and University of Bern

107th Workshop on General Algebra

AAA107, June 20 – 22, 2025

University of Bern, Switzerland

The amalgamation property

A class K of algebras has the amalgamation property

if for all $A, B, C \in K$ and embeddings $f : A \rightarrow B$, $g : A \rightarrow C$

there exists $\mathbf{D} \in \mathsf{K}$ and embeddings $f' \colon \mathbf{B} \to \mathbf{D}$, $g' \colon \mathbf{C} \to \mathbf{D}$ such that

$$f' \circ f = g' \circ g$$
.

The pair $\langle f, g \rangle$ is called a **span** and $\langle \mathbf{D}, f', g' \rangle$ is an **amalgam**.

What can we do with the Amalgamation Property?

Bjarni Jónsson

(AMS-MAA meeting in Madison, WI 1968)

Universal relational systems [1956]

E. g. a group G is universal if any group of cardinality less or equal is isomorphic to a subgroup of **G**. If a class has the amalgamation property and satisfies a few other mild conditions then universal members exists in the class. for each uncountable cardinality

The strong amalgamation property

The amalgamation property (AP):

The strong amalgamation property (SAP): in addition to

$$f' \circ f = g' \circ g$$
 we also require $f'[f[A]] = f'[B] \cap g'[C]$

Equivalently: If **A** is a subalgebra of **B**, **C** in K and $\mathbf{A} = \mathbf{B} \cap \mathbf{C}$ then there exists $\mathbf{D} \in K$ such that **B**, **C** are subalgebras of **D**

Some well-known results

The category of sets has the **strong AP**

(Given sets A, B, C with $A = B \cap C$ take $D = B \cup C$.)

Schreier [1927]: Given two groups \mathbf{B} , \mathbf{C} intersecting in a subgroup \mathbf{A} , the free product of \mathbf{B} , \mathbf{C} with amalgamated subgroup exists

 \implies the category of **groups** has the **SAP**

Jónsson [1956] The variety of all **magmas** (sets with a binary operation) has the **SAP**

(Again take $D = B \cup C$ and fill in the remaining values in the operation table of **D** arbitrarily.)

The same works for any variety of all algebras of a given signature.

More well-known results

Jónsson [1956] The class of partially ordered sets has the SAP

He also proves there exists a countable universal poset

Jónsson [1956] The variety of all lattices has the SAP

Kimura [1957] Semigroups do not have the AP

AP also fails for the class of finite semigroups

Pierce [1968] AP holds for distributive lattices but SAP fails

Pierce [1972] **AP fails** in lattice-ordered groups, **but holds** in abelian lattice-ordered groups

Compendium on amalgamation

Kiss, Márki, Pröhle and Tholen [1983] Categorical algebraic properties. A **compendium on amalgamation**, congruence extension, epimorphisms, residual smallness and injectivity

They summarize some general techniques for establishing these properties

They give a table with known results for 100 categories

Day and Jezek [1984] The only lattice varieties that satisfy AP are the trivial variety, the variety of distributive lattices and the variety of all lattices

Amalgamation for residuated lattices

A **residuated lattice** $(A, \vee, \wedge, \cdot, 1, \setminus, /)$ is an algebra where (A, \vee, \wedge) is a **lattice**, $(A, \cdot, 1)$ is a **monoid** and for all $x, y, z \in A$

$$x \cdot y \le z \iff y \le x \setminus z \iff x \le z/y$$

Residuated lattices (RLs) generalize many algebras related to logic, e. g. Boolean algebras, Heyting algebras, MV-algebras, Hajek's basic logic algebras, linear logic algebras, . . .

Does **AP** hold for **all residuated lattices**? (open since < 2002)

Commutative residuated lattices satisfy $x \cdot y = y \cdot x$

Kowalski, Takamura [2004]: AP holds for commutative RLs

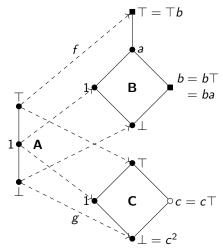
Heyting algebras are integral $(x \le 1)$ idempotent (xx = x) RLs

Maksimova [1977]: Exactly 8 varieties of Heyting algebras have AP

An interesting table by Metcalfe, Paoli, Tsinakis [2023]

Variety	Label	CEP	CIP	DIP	AP
Residuated lattices	\mathcal{RL}	no	yes	?	?
Commutative \mathcal{RL}	CRL	yes	yes	yes	yes
Semilinear \mathcal{RL}	$\mathcal{S}em\mathcal{RL}$	no	no	?	no
Commutative $Sem\mathcal{RL}$	$\mathcal{CS}em\mathcal{RL}$	yes	no	?	?
GBL-algebras	\mathcal{GBL}	no	?	?	no
Commutative \mathcal{GBL}	CGBL	yes	?	?	?
Semilinear \mathcal{GBL}	$\mathcal{S}em\mathcal{GBL}$	no	no	?	no
Commutative $Sem \mathcal{GBL}$	$\mathcal{CS}em\mathcal{GBL}$	yes	no	yes	yes
GMV-algebras	\mathcal{GMV}	no	?	?	no
Commutative \mathcal{GMV}	CGMV	yes	no	yes	yes
ℓ -groups	\mathcal{LG}	no	?	?	no
Abelian ℓ -groups	AbLG	yes	no	yes	yes
Integral \mathcal{RL}	IRL	no	yes	?	?
Commutative \mathcal{IRL}	CIRL	yes	yes	yes	yes
Semilinear IRL	$\mathcal{S}em\mathcal{IRL}$	no	no	?	?
Commutative $SemIRL$	$\mathcal{CS}em\mathcal{IRL}$	yes	no	?	?
Integral \mathcal{GBL}	IGBL	no	?	?	no
Commutative \mathcal{IGBL}	CIGBL	yes	?	?	?
Semilinear \mathcal{IGBL}	$\mathcal{S}em\mathcal{I}\mathcal{G}\mathcal{B}\mathcal{L}$	no	no	?	no
Commutative $Sem IGBL$	$\mathcal{CS}em\mathcal{IGBL}$	yes	no	yes	yes
Integral \mathcal{GMV}	IGMV	no	?	?	?
Commutative \mathcal{IGMV}	CIGMV	yes	no	yes	yes
Negative cones of ℓ -groups	\mathcal{LG}^-	no	?	?	no
Abelian \mathcal{LG}^-	$\mathcal{A}b\mathcal{L}\mathcal{G}^-$	yes	no	yes	yes
Brouwerian algebras	$\mathcal{B}rw$	yes	yes	yes	yes
Relative Stone algebras	\mathcal{RSA}	yes	yes	yes	yes

J. and Santschi 2025: AP fails for residuated lattices



black = idempotent, round = central

Proof: Straightforward to check A, B, C are RLs and f, g are embeddings. Assume by contradiction \exists amalgam **D**. $1 \lor c = \top$ and $1 \lor b = 1 \lor a = a < \top$ hence $g'(c) \neq f'(a)$ and $g'(c) \neq f'(b)$. So f', g' are inclusions and **B**, **C** < **D** Now, since $c = c \top$ and $\top b = \top$, in **D** we have $cb = c \top b = c \top = c$. Moreover $\top = 1 \lor c$ and $c^2 = \bot$. show $c = \top c = \top bc = (1 \lor c)bc$ $= bc \lor cbc = bc \lor c^2 = bc \lor \bot = bc$ (using $\bot < c$ implies $\bot = b\bot < bc$). But also $b = b \top = b(1 \lor c) = b \lor bc$ gives c = bc < b < a. Hence $\top = 1 \lor c \le a \lor c = a$; contradiction!

Some remarks

The proof on the previous slide also shows that the **AP** already fails for the variety of **distributive residuated lattices**,

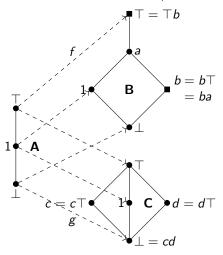
as well as for the $\{\setminus, /\}$ -free subreducts of residuated lattices, i.e., for lattice-ordered monoids.

Also the proof does not depend on meet or on the constant 1 being in the signature, so the following varieties do not have **AP**:

- residuated lattice-ordered semigroups,
- lattice-ordered semigroups,
- residuated join-semilattice-ordered semigroups and
- join-semilattice-ordered semigroups.

J. and Santschi 2025: AP fails for idempotent RLs

Theorem: **AP** fails for idempotent RLs



black = idempotent, round = central

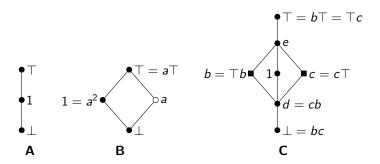
Proof: Very similar argument (try it)

J. and Santschi 2025: **AP fails** for **involutive** RLs

For a RL with a new constant 0 define $\sim x = x \setminus 0$, -x = 0/x

A RL is **involutive** if $\sim -x = x = -\sim x$

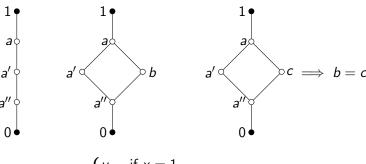
Theorem: AP fails for involutive residuated lattices



Note: in all algebras 0 = 1, black = idempotent, round = central

AP fails for distributive residuated lattices

A picture proof:



$$x \cdot y = y \cdot x = \begin{cases} y & \text{if } x = 1 \\ a'' & \text{if } \substack{x \in \{a, b, c\} \\ y \in \{a, a'\} \\ 0 & \text{otherwise}} \end{cases} \quad b \cdot b = 0 \quad c \cdot c = a''$$

Proved independently by Galatos 2002, J. 2014, Fussner 2023.

An interesting table by Metcalfe, Paoli, Tsinakis [2023]

				commutative		
Variety	CIP	DIP	AP	CIP	DIP	AP
Residuated Lattices	yes	?	no	yes	yes	yes
Semilinear RL	no	?	no	no	?	?
GBL-algebras	?	?	no	?	?	?
Semilinear GBL	no	?	no	no	yes	yes
GMV-algebras	?	?	no	no	yes	yes
ℓ -groups	?	?	no	no	yes	yes
Integral RL	yes	?	?	yes	yes	yes
Semilinear IRL	no	?	?	no	?	?
Integral GBL	?	?	no	?	?	?
Semilinear IGBL	no	?	no	no	yes	yes
Integral GMV	?	?	?	no	yes	yes
Negative cones of ℓ-groups	?	?	no	no	yes	yes
Brouwerian algebras	—	_		yes	yes	yes
Relative stone algebras	—	_	_	yes	yes	yes

An interesting table by Metcalfe, Paoli, Tsinakis [2023]

			commutative		
Variety		AP			AP
Residuated Lattices		no			yes
Semilinear RL		no			?
GBL-algebras		no			?
Semilinear GBL		no			yes
GMV-algebras		no			yes
ℓ -groups		no			yes
Integral RL		?			yes
Semilinear IRL		?			?
Integral GBL		no			?
Semilinear IGBL		no			yes
Integral GMV		?			yes
Negative cones of ℓ-groups		no			yes
Brouwerian algebras		—			yes
Relative stone algebras		—			yes

Many other results are known...

For example:

Fusser, Metcalfe and Santschi [2023] showed that there are exactly 60 varieties of commutative idempotent semilinear residuated lattices have the amalgamation property.

Giustarini and Ugolini [2024] proved that semilinear commutative (integral) residuated lattices and their pointed versions do not have the amalgamation property.

. . .

			commutative		
Variety		AP			AP
Residuated Lattices		no			yes
Semilinear RL		no			no
Distributive RL		no			no
Integral RL		?			yes
Idempotent RL		no			yes
Involutive RL		no			yes
DIRL		no			no
DIdRL		?			?
DInRL		no			no
GBL-algebras		no			?
GMV-algebras		no			yes
ℓ -groups		no			yes
Semilinear IRL		?			no
Integral GBL		no			?
Integral GMV		?			yes
Negative cones of ℓ-groups		no			yes
alatos 2002, Fussner 2023, Gir	ıstarini	. Ugolini 20	24 1	Santsc	hi 202

Galatos 2002, Fussner 2023, Giustarini, Ugolini 2024, J., Santschi 2025

How we searched for failures of the AP

To **disprove AP** or **SAP**, we wish to search for 3 **small** models A, B, C in K such that A is a **submodel** of both B and C.

We used the **Mace4 model finder** from **Bill McCune [2009]** to enumerate nonisomorphic models A_1, A_2, \ldots in a **finitely** axiomatized first-order theory Σ .

For each A_i we construct the **positive diagram** Δ_i^+ and use **Mace4** again to find all **nonisomorphic** models B_1, B_2, \ldots of $\Delta_i^+ \cup \Sigma \cup \{\neg(c_a = c_b) : a \neq b \in A_i\}$ with **slightly more** elements than A_i .

Note that **by construction**, each B_i has A_i as submodel.

Checking if the AP fails

Iterate over **distinct** pairs of models B_j , B_k and construct the theory Γ that extends Σ with the **positive diagrams of these two models**, using only **one set of constants** for the overlapping submodel A_i .

Add formulas to Γ that ensure all constants of B_j are **distinct**, and same for B_k .

Use **Mace4** to check for a **limited** time whether Γ is satisfiable in some **small** model.

If not, use the **Prover9 automated theorem prover** (McCune [2009]) to search for a proof that Γ is **inconsistent**. If **yes**, then a **failure of AP** has been found.

To check if **SAP** fails, add formulas that ensure constants of **each** pair of models **cannot** be identified, and **also iterate** over pairs B_i , B_i .

Some open problems

Does the variety of **integral residuated lattices** have the amalgamation property?

Find the **amalgamation base** of residuated lattices (all **A** such that any span using **A** can be amalgamated).

References

W. Fussner, G. Metcalfe, S. Santschi: *Interpolation and the Exchange Rule*, arXiv (2023) https://arxiv.org/abs/2310.14953

V. Giustarini, S. Ugolini: *Blockwise gluings and amalgamation failures in integral residuated lattices*, arXiv (2024), https://arxiv.org/abs/2408.17400

B. Jónsson: Universal relational systems, Math. Scand., 4 (1956), 193-208.

G. Metcalfe, F. Paoli, and C. Tsinakis: *Residuated Structures in Algebra and Logic*, Vol 277, Mathematical Surveys and Monographs. American Mathematical Society, 2023.

W. McCune: Prover9 and Mace4, www.cs.unm.edu/~mccune/prover9, 2005-2010.

H. Takamura: Semisimplicity, Amalgamation Property and Finite Embeddability Property of Residuated Lattices, Ph.D thesis, Japan Adv. Inst. of Science and Technology, 2004. https://dspace.jaist.ac.jp/dspace/handle/10119/961

Thanks!